1Hz 100mT Electromagnetic Field Induces Apoptosis in Breast Cancer Cells Through Up-Regulation of P38 and P21
Authors
Abstract:
Introduction: Breast cancer is the most common cause of cancer-related death among women. Recently, extremely low-frequency electromagnetic field (ELF-EMF) has been proposed as a new interfering agent with future therapeutic potentials. Many studies have revealed that cellular processes such as apoptosis in breast cancer are affected by ELF-EMFs. However, more researches are needed to clarify the underlying mechanism of action for these fields. In this study, the apoptotic effect of ELF-EMF on the MC4L2 cell line was examined and the mRNA expression level of the P21 and P38 genes were further investigated. Methods: A triple-positive mouse breast cancer cell line (MC4L2) was purchased from the Genetic Resource Center (Iran). This study was performed on two groups of ELF-EMF exposure (100mT/1 Hz for 5 days, 120 min each day) and sham exposure. Cell viability and apoptosis rate of both the exposure and sham exposure groups weredetermined by flow cytometry. Alterations in the P21 and P38 mRNAs expression levelswere investigated; using real-time PCR. Results: ELF-EMF exposure induced 30% apoptosis in MC4L2 cells compared with the control group. The mRNA expression level of P38 and P21 was significantly increased after ELF-EMF exposure compared to the control group. Conclusions: ELF-EMF induces apoptosis in the MC4L2 triple-positive cell line. Furthermore, this exposure affects important gene expression involved in the cell cycle. Our data propose that ELF-EMF in a specific time, intensity and frequency could be beneficial for breast cancer treatment. However, more studies are required to confirm our findings.
similar resources
Effects of 1Hz 100mT electromagnetic field on apoptosis induction and Bax/Bcl-2 expression ratio in breast cancer cells
Introduction: Breast cancer is the most common metastatic malignancy and the second leading cause of death in women. Recently, extremely low-frequency electromagnetic fields (ELF-EMFs) seem to modulate the rate of proliferation and enhance apoptosis and are considered as an emerging approach to cancer therapy. Despite recent success in the electromagnetic fields, the results are still neither d...
full textEpigallocatechin-3-Gallate Induces Apoptosis through Up-regulation of Bax and Down-regulation of Bcl-2 in Prostate Cancer Cell Line
Background and Aims: Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound from green tea, which its anticancer effects on many types of cancers have been confirmed, but the molecular mechanism by which EGCG induces apoptosis remains unknown. The aim of the present study was to investigate anti-proliferative properties and apoptotic signaling pathway of EGCG on PC3 human prostate cancer ...
full textPulsed electromagnetic field at frequency and intensity resembling potassium ion cyclotron resonance selectively impairs breast cancer cell through apoptosis
Introduction: Breast cancer (BC) is the most common women cancer worldwide. Radiotherapy and chemotherapy are the two common treatment options but these techniques suffer low selectivity and adverse effects on surrounding normal tissues. Non- ionizing pulsed electromagnetic fields (PEMFs) in ultra-narrow band frequency and intensity have shown anticancer effects. Changing potas...
full textUp-regulation of miR-21 decreases chemotherapeutic effect of dendrosomal curcumin in breast cancer cells
Objective(s): Despite the good results of anticancer activities by curcumin, there are some hurdles that limit the use of curcumin as an anticancer agent. Many methods were examined to overcome this defect like the use of the dendrosomal curcumin (DNC). There is increasing evidence that miRNAs play important roles in biological processes. In this study, we focus on the roles of microRNA-21 in t...
full textDown Regulation of CLDND1 Induces Apoptosis in Breast Cancer Cells
Identification of targets for apoptosis induction is important to provide novel therapeutic approaches in breast cancer. Our earlier studies showed that down regulation of protein kinase C δ (PKCδ) induces death in breast cancer cells. In this study we set out to identify previously unrecognized apoptosis regulators in breast cancer cells. To identify candidates, global expression analysis with...
full textMy Resources
Journal title
volume 4 issue 1
pages 23- 29
publication date 2020-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023